Rust

Rust

The Longest War

eBook - 2015
Average Rating:
Rate this:
26
5
An environmental journalist traces the historical war against rust, revealing how rust-related damage costs more than all other natural disasters combined and how it is combated by industrial workers, the government, universities, and everyday people.
Publisher: New York : Simon & Schuster, 2015
Edition: First Simon & Schuster hardcover edition
ISBN: 9781451691610
1451691610
9781451691597
1451691599
9781451691603
1451691602
Characteristics: 1 online resource (xii, 288 pages, 8 unnumbered pages of plates) : illustrations (some color)

Opinion

From the critics


Community Activity

Quotes

Add a Quote

j
jimg2000
Mar 31, 2018

Rust has knocked down bridges, killing dozens. It’s killed at least a handful of people at nuclear power plants, nearly caused reactor meltdowns, and challenged those storing nuclear waste.
===
Rust slows down container ships before stopping them entirely by aiding in the untimely removal of their propellers. It causes hundreds of explosions in manholes, blows up washing machines, and launches water heaters through the roof, sky high. It clogs the nozzles of fire sprinkler heads: a double whammy for oxidation. It damages fuel tanks and then engines. It seizes up weapons, manhandles mufflers, destroys highway guardrails, and spreads like a cancer in concrete. It’s opened up crypts.
===
Today’s paints self-heal, or can be applied underwater, or change color when exposed to rust—and still, rust plagues the navy.

j
jimg2000
Mar 31, 2018

Marc Reisner, in Cadillac Desert: The American West and Its Disappearing Water, writes that, much to our dismay, massive concrete dams—millions of cubic yards’ worth—may be what we end up leaving for future archaeologists to ponder.
===
Almost every metal is vulnerable to corrosion. Rust inflicts visible scars, turning calcium white, copper green, scandium pink, strontium yellow, terbium maroon, thallium blue, and thorium gray, then black. It’s turned Mars red. On Earth, it gives the Grand Canyon, bricks, Mexican tile, and blood their hue. A ruthless enemy, it never sleeps, reminding us constantly that metals, just like us, are mortal. Were Mad Men’s Don Draper to pitch metal, he’d say it’s like a maiden: rare, unrivaled in beauty, and impossibly alluring; but also demanding of constant attention, best watched carefully, quick to age, and intrinsically unfaithful.

j
jimg2000
Mar 31, 2018

Relying on corrosion tests (developed by Baboian), the US Mint designed new pennies and dollar coins. The government does not want, literally, to lose money.
===
As water flows from the Rockies to the Mississippi, and gets successively treated by more municipalities, it grows laden with calcium and magnesium, becoming what most people call hard. It’s not like utilities are trying to make the water hard.
===
But rust is costlier than all other natural disasters combined, amounting to 3 percent of GDP, or $437 billion annually, more than the GDP of Sweden. That averages out to about $1500 per person every year. It’s more if you live in Ohio, more if you own a boat like Syzygy, much more if you command an aircraft carrier.

j
jimg2000
Mar 31, 2018

Because corrosion is exothermic, the skin of a corroding Ford becomes hotter than the metal underlying it, and this thermal gradient generates local stress called electrostriction.
===
Punta Galeta, Panama, wet six days a week, holds the world’s highest corrosion rates for steel, zinc, and copper, and is conveniently located at the Caribbean entrance to the Panama Canal. For aluminum, though, the most threatening place in the world is Auby, France.
===
All of that paint was almost as thick as the copper, and unfortunately, had trapped water between the iron frame and the copper skin—exactly what Eiffel and Bartholdi had wanted to avoid. Water between the copper and iron was as bad as having the two metals in contact with each other. Hence one of the American team’s first discoveries: the statue had become an enormous battery. As a result, corrosion had produced a lot of “wastage,” and in some places, paint was the only material holding things together.

j
jimg2000
Mar 31, 2018

Ultimately, Iacocca’s campaign raised $277 million ($1.4 billion in today’s dollars) and threw it at a three-hundred-foot-tall metal object on an island on the windy, rainy, salty, humid Atlantic Coast.
===
The coal tar was more stubborn, reacting as it had with various corrosion products. Sandblasting would have removed it, but also would have damaged the copper, which was only 3/32 of an inch thick. Same for most other abrasives, and most solvents.
===
The statue, he determined, “was an ideal configuration for galvanic corrosion.” On account of the copper, the iron was corroding one hundred times faster than it would by itself. Worse, because the surface area of the copper was so large compared with that of the iron, corrosion was sped up another tenfold.

j
jimg2000
Mar 31, 2018

“The pentle hooks on the onagers are weakened so badly by corrosion,” he wrote, “that the arbalests are causing more casualties in our own army than to the enemy.”
===
Some, like aluminum, chrome, nickel, and titanium, form a thin outer layer of protective metal oxide, and then call it quits. Many of the corrosion-resistant metals are named in honor of Greek gods or kings, for no other entity could have created such marvelous stuff. Nevertheless, most metals met oxygen long ago, which explains why precious few metals present their naked selves anywhere on Earth. (This also explains why oxygen did not accumulate in the atmosphere for billions of years, until rocks on the surface had reached their fill.)
===
Shiny and strong, the stuff was perfect for Inuit spears, or Sumerian shields, or Tibetan jewelry. It was a nickel-iron alloy, not unlike stainless steel, and it came from the sky, in the form of meteorites.

j
jimg2000
Mar 31, 2018

The most noble metals—gold, platinum, iridium, palladium, osmium, silver, rhodium, and ruthenium—are also the most valuable, and this is no coincidence. They’re valuable because they’re reliable. They don’t corrode. The nobility of a metal is measured in volts, from 1.18 (platinum) to -1.6 (magnesium).
===
if a pipeline operator pushed 0.85 volts into his buried pipeline, he could convince the electrons in the steel not to be lured elsewhere.
===
The fourth arm is sort of a modern version of paint. Inhibitors, binding to metal before oxygen has a chance to, work just as well in abetting a brown outcome. Many are synthetic, but they’ve been made from mangos, Egyptian honey, and Kentucky tobacco. Anodizing—intentionally oxidizing the surface of aluminum by dipping it in acid and applying current—works because the thick oxide layer is then sealed with an inhibitor. Electroplating with a metal more durable than zinc—cadmium, chromium, nickel, or gold—is sort of the rich-man’s galvanizing.

j
jimg2000
Mar 31, 2018

Except they didn’t call the common 12-ounce can a can. They called it a 202 (because the diameter across the top is 2 2/16").
===
Commercial success demanded blending science and marketing; a steelmaker had to recognize not just the value of a new alloy, but its potential use.
===
A saying at the time, that “where there’s muck there’s money,” legitimized the grime, reek, and dust of industrial Sheffield, but Harry recognized later that it was a misfortune to be from there, for nobody had much ambition.
===
respiratory problems like “grinders disease,” the result of inhaling sandstone and steel particles all day.
===
In 1882 his parents moved down to Carlisle Street, beside the railroad tracks—a place said to be separated from hell by only a sheet of tissue paper. It was filthier, dustier, smokier.

j
jimg2000
Mar 31, 2018

The people of the world go through 180 billion aluminum beverage cans a year. That’s four six-packs for every person on the planet. The United States and Canada gobble up more than half of them—100 billion a year—and Ball makes a third of these. (Two other companies make the majority of the rest.)
===
Consider a can of Coke. It’s a corrosion nightmare. Phosphoric acid gives it a pH of 2.75, salts and dyes render it still more aggressive, and the concoction exists under ninety pounds per square inch of pressure, trying to force its way out of a layer of aluminum a few thousandths of an inch thick. It sits there for weeks, months, years, often in a humid fridge, or dank pantry, or hot trunk, or stagnant warehouse. That the can doesn’t corrode is a technological marvel. That we are capable of reproducing that result hundreds of billions of times over—with a failure rate of 0.002 percent—is an unheralded corrosion miracle.

j
jimg2000
Mar 31, 2018

If you stacked up all of the aluminum beverage cans produced in a year, the stack would be 13.5 million miles long. That’s long enough to make a tower that reaches the moon and to have enough cans leftover to make fifty-five more such towers. Of course, since an empty can is only capable of supporting 250 pounds, and each can weighs about a half ounce, you couldn’t stack up more than 7,353 cans before their own weight would crush the bottommost can, toppling the whole thing. So, practically, you’re limited to building a tower 2,757 feet tall, which is 40 feet taller than Dubai’s Burj Khalifa, the world’s tallest skyscraper. With all those cans we pump out every year, you could make 20 million such towers, which means you’d have to build more than 50,000 of the highest man-made structures ever built every day just to keep up with production.

View All Quotes

Comment

Add a Comment

j
jimg2000
Mar 31, 2018

The author introduced an array of characters who fought rust from the credited inventors of stainless steel, restorers of the Stature of Liberty, people in galvanized steel, a photographer of the abandoned Bethlehem Steel plant, corrosion fighters in Pentagon, men in charge of the Trans-Alaska Pipeline pig runs, owner of The Rust Store and a sales associate of rust inhibitors in a Home Depot ... Some details are a bit tedious but mostly enjoyable to read, especially appreciated the lessons in the history and science behind the making of cans for food/drinks and the development of corrosion-resistant materials and coatings.

Note: Finalist for the Los Angeles Times Book Prize and Wall Street Journal Best Book of the Year

p
paulskarstad
Mar 31, 2017

If you want to understand corrosion from the perspective of “People” magazine, then, by all means, read this book. If you want to understand how and why things corrode and what can be done about it, then, by all means, find a different book to read.

j
JHCL
Nov 23, 2015

Not technical enough for my tastes. I give it 5 out of 10. Not all that interesting - some stuff is just lists, like lists of members of such and such an organization. Really - who cares. I find i am skipping many paragraphs.
Related to that; I think needed a better editor, for example some sentences in the book don't make sense. Reminds me a bit of, and not s good as; Tubes: A Journey to the Center of the Internet

l
las1817
Oct 19, 2015

The book is not really about rust. It's more of a collection of human interest stories, each of which happens to involve corrosion somehow.

It's good in places but kind of uneven overall. Each chapter is pretty much disconnected from the rest: the sort of book where if you're not digging the character or story after the first couple pages of a chapter, you might as well just skip it and move on to the next.

j
johnwish34
Oct 07, 2015

A sprawling account of rust in various settings...
lots of extraneous material.
I liked the story of the statue of liberty's deterioration and the labor of love and technology which gave it many more years.

Age

Add Age Suitability

There are no ages for this title yet.

Summary

Add a Summary

There are no summaries for this title yet.

Notices

Add Notices

There are no notices for this title yet.

Explore Further

Recommendations

Subject Headings

  Loading...

Find it at HCL

  Loading...
[]
[]
To Top